<input id="kcdft"></input><dl id="kcdft"><ins id="kcdft"></ins></dl>

    <dl id="kcdft"></dl>
    1. <output id="kcdft"></output>

      关于美国摩根州立大学Xiao-Xiong Gan教授讲座的通知
      2019-03-19 16:36   审核人:

      报告题目:An Introduction to Formal Analysis

      报告人:Xiao-Xiong Gan

      报告时间:2019年3月20日下午14:30——16:00

      报告地点:理学院10号教学楼415会议室

      报告摘要For any , a formal power series on a ring S is de?ned to be a mapping from  to S. A formal power series f in x from N to S is usually denoted as a sequence  or as a power series

                  1)

      where  for every j ∈N∪{0}. The set of all formal power series on S is denoted by X(S).

      If considering a formal power series as a sequence, what is the di?erence between X and `p?

         If considering a formal power series as a power series in (1), what is the di?erence or relationship between formal power series and the traditional power series?

      Why shall we study formal power series ?

      What is formal analysis?

      This talk tries to answer those questions and brings discussion of all kinds of questions about formal anaysis, a relatively new mathematical subject.

      报告人简介:

      A. Professional Preparation

      Ph.D.   1992, Mathematics, Kansas State University, USA

      Dissertation: An Approximate Antigradient and Marcinkiewicz Problem.

      Advisor: Professor Karl Stromberg

      M.S.    1985, Applied Mathematics, Chinese Academy of Sciences, China.

      Thesis: Optimal Designing of Zhunger Coal Mining.

      Advisor: Professor Loo-Keng Hua (华罗庚)

      B.S.     1982, Mathematics, Central China Normal University, Wuhan, China.

      B. Appointments

      1. Professor of Mathematics and Graduate Coordinator, Department of  

      Mathematics, Morgan State University, Baltimore, Maryland 21251,USA

      2. Oversee Professor, Hua Loo-Keng Center, Chinese Academy of     

      Sciences, Beijing, China.

      C. Main Mathematical Contributions

       

      1. Invented the Formal Analysis.

      2. Solved the Marcinkiewicz Universal Function problem in higher dimensional space (with K. Stromberg).

      3. Introduced the JIT-Transportation Model and it Algorithm (with G. Bai)

      4. Introduced the General Composition Theorem for formal power series (with N. Knox).

      5. Introduced the Space of Formal Laurent Series (with D. Bugajewski).

      6. Boundary convergence of power series (with D. Bugajewski).

       

       

      理学院

      2019年3月19日

      关闭窗口
      88赛马彩票是真的吗

      <input id="kcdft"></input><dl id="kcdft"><ins id="kcdft"></ins></dl>

        <dl id="kcdft"></dl>
        1. <output id="kcdft"></output>

          <input id="kcdft"></input><dl id="kcdft"><ins id="kcdft"></ins></dl>

            <dl id="kcdft"></dl>
            1. <output id="kcdft"></output>

              皇家赛马会 中国足彩网14选9 重庆幸运农场全天计划群 500彩票网双色球预测 学围棋 体彩福建22选5开奖 六合王国 四川快乐12中奖技巧 德州扑克headsup 体彩p5开奖走势图 萧山福彩中心在哪 欢乐生肖福彩 赚钱游戏 棋牌论坛 山西快乐十分玩法规则